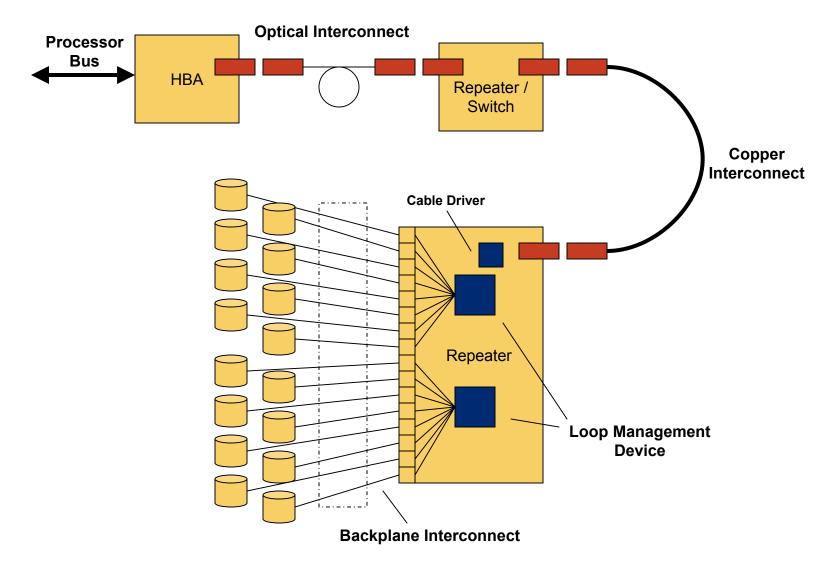
where information lives

Fibre Channel

Disk Storage System Interface Speed Roadmap



Recommendations for future drive interfaces

- Needs to co-exist with 4G Arbitrated Loops
 - Newer generation disks are frequently installed into previous generation systems.
 - Drives may be intermixed with previous generation disks.
- Needs to enable a complete coherent infrastructure from the processor bus to the drive media interface.
 - Speed agility and protocol conversion impact all aspects of the storage system infrastructure, not just the disk interface.
- Needs to remain cost-competitive with other enterpriseclass infrastructures.
 - Will be measured against value propositions of other disk interface technologies.

Example Storage System Infrastructure

Proposals before us

- 4G migrates to 6G
 - Converge on SAS PHY
- 4G migrates to 8G
 - Line doubling of 4G
- 4G migrates to 10GFC
 - Use existing PHY roadmap but requires adoption of a different encoding scheme from previous AL generations.

- 4G migrates to 12G
 - Use 8B/10B encoding, data rate compatible with 10GFC.

Speeds & Feeds

Disk Interfac Speed	e Half-Duplex Data Rate	Processor Bus Requirement	Full-Duplex Data Rate	Processor Bus Requirement		d Media	Rate†	Derived‡ 64K IOPS
1G	100MB/Sec	PCI 32/33	200MB/Sec	PCI 64/33	6.25	3.125	1.563	95 / 47 / 23
2G	200MB/Sec	PCI 64/33	400MB/Sec	PCI(X) 64/66	12.50	6.25	3.125	190 / 95 / 47
4G	400MB/Sec	PCI(X) 64/66	800MB/Sec	PCI-X 1.0-133 /	25.00	12.50	6.25	381 / 190 / 95
6G	600MB/Sec	PCI-X 1.0-133	1200MB/Sec	PCI-X 2.0 266, PCI-e 4X	37.5	18.75	9.375	571 / 285 / 99
8G	800MB/Sec	PCI -X 1.0-133	1600MB/Sec	PCI-X 2.0-266 PCI-e 4X	50.00	25.00	12.50	762 / 381 / 190
10GFC 12G	1200MB/Sec	PCI -X 2.0-266/ PCI-e 4X	2400MB/Sec	PCI-X 2.0-533, PCI-e 8X	75.00	37.5	18.75	1143 / 571 / 285

[†] Apportioned bandwidth available to each drive of a 16, 32, or 64-drive loop, MB/sec.

[‡] Average number of 64K I/o's that apportioned bandwidth could support.

Speeds & Feeds

Disk Interface Speed	Half-Duplex Data Rate	Processor Bus Requirement	Full-Duplex Data Rate	Processor Bus Requirement	Shared Media RateT x16 x32 x64	Derived‡ 64K IOPS
1G	100MB/Sec	PCI 32/33	200MB/Sec	PCI 64/33	6.25 3.125 1.563	95 / 47 / 23
2G	200MB/Sec	PCI 64/33	400MB/Sec	PCI(X) 64/66	12.50 6.25 3.125	190 / 95 / 47
4G	400MB/Sec	PCI(X) 64/66	800MB/Sec	PCI-X 1.0-133 /	25.00 12.50 6.25	381 / 190 / 95
6G	600MB/Sec	PCI-X 1.0-133	1200MB/Sec	PCI-X 2.0 266, PCI-e 4X	37.5 18.75 9.375	571 / 285 / 39
8 G	800MB/Sec	PCI -X 1.0-133	1600MB/Sec	PCI-X 2.0-266 PCI-e 4X	50.00 25.00 12.50	762 / 381 / 190
10GFC 12G	1200MJ //Sec	PCI X 2 0-266/ PCI-e 4X	2400MB/Sec	PCI-X 2.0-533 PCI-e 8X	75.00 37.5 18.75	1143 / 571 / 285

where information lives

System Bus requirements for 6G and 8G are the same

Speeds & Feeds

Di	sk Interface Speed	Half-Duplex Data Rate	Processor Bus Requirement	Full-Duplex Data Rate	Processor Bus Requirement	Shared Media RateT x16 x32 x64	Derived‡ 64K IOPS
	1G	100MB/Sec	PCI 32/33	200MB/Sec	PCI 64/33	6.25 3.125 1.563	95 / 47 / 23
	2G	200MB/Sec	PCI 64/33	400MB/Sec	PCI(X) 64/66	12.50 6.25 3.125	190 / 95 / 47
	4G	400MB/Sec	PCI(X) 64/66	800MB/Sec	PCI-X 1.0-133 /	25.00 12.50 6.25	381 / 190 / 95
	6G	600MB/Sec	PCI-X 1.0-133	1200MB/Sec	PCI-X 2.0 266, PCI-e 4X	37.5 18.75 9.375	571 / 285 / 99
	8G	800MB/Sec	PCI -X 1.0-133	1600MB/Sec	PCI-X 2.0-266 PCI-e 4X	50.00 25.00 12.50	762 / 381 / 190
	10GFC 12G	1200MB/Sec	PCI -X 2.0-266/ PCI-e 4X	2400MB/Sec	PCI-X 2.0-533, PCI-e 8X	75.00 37.5 18.75	1143 / 571 / 285

where information lives

Architecting for 10GFC eliminates processor bus b/w as a factor

Speed Agility - A Little History

- 1G Fibre Introduced.
 - No speed agility supported.
- 2G Fibre Introduced
 - SAN customers required Auto-Negotiation in order to adopt.
 - AL adopted backplane hardstrap method.

- 4G Fibre TBD
 - SAN will continue to use AN.
 - AL will continue to use hardstrap.
- NexGen Fibre
 - Will this be specified in the SAN? Can this work inside the scope of the present AN algorithm (i.e., 4 levels)?
 - 4G backplane compatibility dictates the adoption of hardstrap method.

Technology Components

Disk Interface Speed	Optical Cable Form Factor	Copper Cable Form Factor	Disk Connector
1G	GLM/GBIC/SC	DB9, HSSDC	SCA
2G	SFF/SFP/LC	HSSDC(2), SFP	SCA
4G	SFF/SFP/LC	HSSDC(2), SFP	SCA
6G	TBD/LC (?)	CX4, IB / SFP (?)	SCA
8G	XFP,X2,XPAK/LC (?)	CX4, SFP (?)	SCA
10GFC 12G	XFP,X2,XPAK/LC	CX4, XFI_Cable	TBD

Physical Technology

Disk Interface Speed	Line Rate, Gbps	Optical Cable Distance Objective	Copper Cable Distance Objective	Backplane Distance Objective	SERDES (CMU)
4G/	4.250GHz/	150M/	7M /	0.5M /	40X,
6G	6.375GHz	120M?	6M?	TBD	120X/20X
4G/	4.250GHz/	150M /	7M /	0.5M /	40X,
8G	8.500GHz	100M?	5M?	TBD	80X
4G/	4.250Gbps	150M /	7M /	0.5M /	Dual
10GFC	10.51Gbps	80M	3M?	TBD	Oscillator
4G/	4.250GHz	150M /	7M /	0.5M /	40X /
12G	12.750GHz	50M?	2M?	TBD	120X

Building the Infrastructure

- ⇒ 4G / 6G
 - O/E & Cable FF need to be compatible.
 - Link budget will be a challenge.
 - Interesting alignment to 10GFC (2x6G = 10GFC/12G).

- ⇒ 4G / 8G
 - O/E & Cable FF need to be compatible.
 - Link budget will be a challenge.
 - Should we worry about the question of what next now?
- ⇒ 4G / 10GFC
 - Incompatible Optical and cable Form Factors.
 - Incompatible Encoding formats.
 - 10GFC doesn't carry AL.
- 4G / 12GFC
 - Incompatible Optical and cable Form Factors
 - Link budgets extremely challenging.
 - Cost issues?

Conclusions

- ⇒ 4G → 6G
 - Requires same system b/w upgrade as 8G.

- Not clear if there are any system-wide advantages in cost (relative to 8G).
- \Rightarrow 4G \rightarrow 8G
 - Winner by default?
 - Least impact in terms of compatibility.
 - Best "bang for buck"?
- ⇒ 4G → 10GFC
 - Not clear what the advantage is of extending SAN to disk interface is.
 - Interoperability requirement imposes heavy burden.
- ⇒ 4G → 12G
 - Requires additional link budget (over 10GFC)
 - Need to assess cost vs. value proposition